An Efficient Randomized Algorithm for Higher-Order Abstract Voronoi Diagrams
نویسندگان
چکیده
Given a set of n sites in the plane, the order-k Voronoi diagram is a planar subdivision such that all points in a region share the same k nearest sites. The order-k Voronoi diagram arises for the k-nearest-neighbor problem, and there has been a lot of work for point sites in the Euclidean metric. In this paper, we study order-k Voronoi diagrams defined by an abstract bisecting curve system that satisfies several practical axioms, and thus our study covers many concrete order-k Voronoi diagrams. We propose a randomized incremental construction algorithm that runs in O(k(n − k) log2 n + n log3 n) steps, where O(k(n − k)) is the number of faces in the worst case. Due to those axioms, this result applies to disjoint line segments in the Lp norm, convex polygons of constant size, points in the Karlsruhe metric, and so on. In fact, this kind of run time with a polylog factor to the number of faces was only achieved for point sites in the L1 or Euclidean metric before. 1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems
منابع مشابه
New Results on Abstract Voronoi Diagrams
Voronoi diagrams are a fundamental structure used in many areas of science. For a given set of objects, called sites, the Voronoi diagram separates the plane into regions, such that points belonging to the same region have got the same nearest site. This definition clearly depends on the type of given objects, they may be points, line segments, polygons, etc. and the distance measure used. To f...
متن کاملRandomized construction diagrams * incremental of abstract Voronoi Rolf
Abstract Voronoi diagrams were introduced by R. Klein (1988) as an axiomatic basis of Voronoi diagrams. We show how to construct abstract Voronoi diagrams in time O(n log n) by a randomized algorithm, which is based on Clarkson and Shor’s randomized incremental construction technique (1989). The new algorithm has the following advantages over previous algorithms: l It can handle a much wider cl...
متن کاملRandomized Incremental Construction of Abstract Voronoi Diagrams
Abstract Voronoi diagrams were introduced by R . Klein [Kle89b, Kle88a, Kle88b] as an axiomatic basis ofVoronoi diagrams. We show how to construct abstract Voronoi diagrams in time O(nlogn) by a randomized algorithm, which is based on Clarkson and Shor's randomized incremental construction technique [CS89]. The new algorithm has the following advantages over previous algorithms: • It can handle...
متن کاملOn the Construction of Abstract Voronoi Diagrams
We show that the abstract Voronoi diagram of n sites in the plane can be constructed in time O(n log n) by a randomized algorithm. This yields an alternative, but simpler, O(n log n) algorithm in many previously considered cases and the first O(n log n) algorithm in some cases, e.g., disjoint convex sites with the Euclidean distance function. Abstract Voronoi diagrams are given by a family of b...
متن کاملVoronoi Diagrams on Planar Graphs, and Computing the Diameter in Deterministic Õ(n5/3) Time
We present an explicit and efficient construction of additively weighted Voronoi diagrams on planar graphs. Let G be a planar graph with n vertices and b sites that lie on a constant number of faces. We show how to preprocess G in Õ(nb) time so that one can compute any additively weighted Voronoi diagram for these sites in Õ(b) time. We use this construction to compute the diameter of a directe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016